

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0168 of 1 June 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Capsule Adhesive Anchor W-VPZ

Bonded anchor for use in concrete

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Werk 1

15 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt.@dibt.de | www.dibt.de

European Technical Assessment ETA-21/0168 English translation prepared by DIBt

Page 2 of 15 | 1 June 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 15 | 1 June 2021

European Technical Assessment ETA-21/0168 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Capsule Adhesive Anchor W-VPZ is a bonded fastener consisting of a glass capsule W-VPZ and a threaded rod W-VD-A according to Annex A1.

The glass capsule W-VPZ is placed in the hole and the threaded rod W-VD-A is driven by machine as specified in Annex B4.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1 to C2, B2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1, C3
Displacements under short-term and long-term loading	See Annex C4
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-21/0168

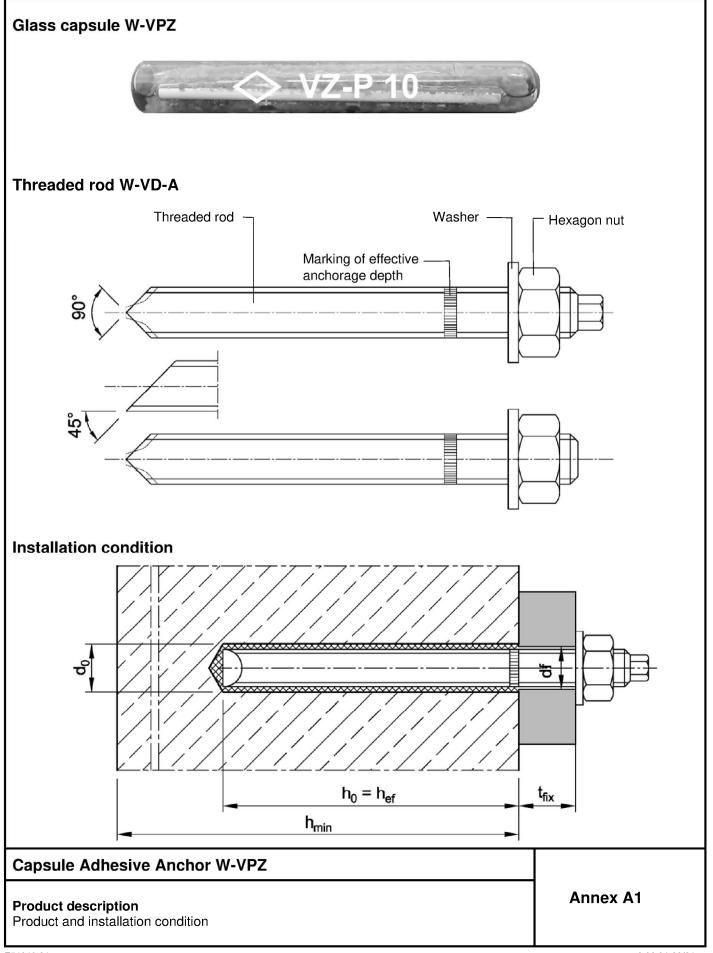
Page 4 of 15 | 1 June 2021

English translation prepared by DIBt

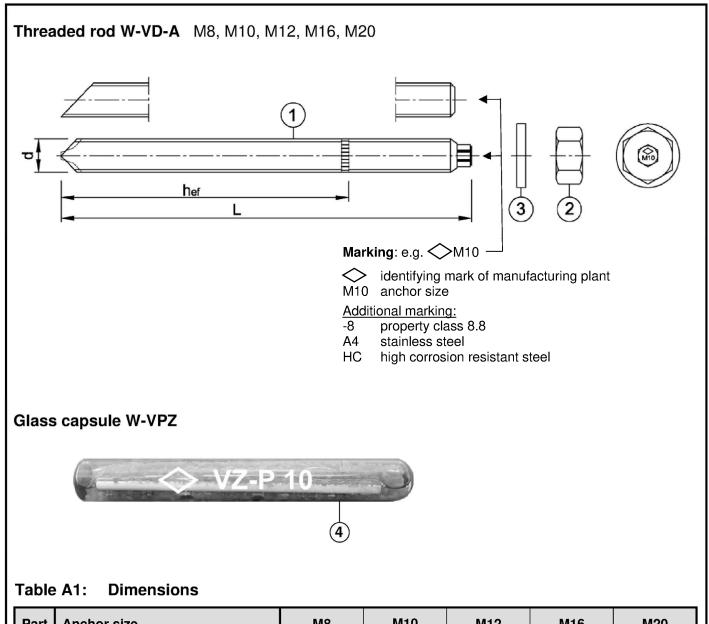
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 1 June 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Part	Anchor size			M8	M10	M12	M16	M20
			[mm]	8	10	12	16	20
1	Threaded rod	L≥	[mm]	95	100	120	140	190
		h _{ef}	[mm]	80	90	110	125	170
2	Hexagon nut	SW	[mm]	13	17	19	24	30
4	Glass capsule, imprint [-		[-]	VZ-P 8	VZ-P 10	VZ-P 12	VZ-P 16	VZ-P 20

Capsule Adhesive Anchor W-VPZ

Product description

Marking and dimensions

Annex A2

Page 7 of European Technical Assessment ETA-21/0168 of 1 June 2021

Part	Designation		Material	S				
electr not-d	ip galvanized ≥ 40	5 μm accorc 0 μm (50 μn 5 μm accorc	n in avera	ge) accordi	ing to EN I	ISO 1461:2	2009 and EN	ISO 10684:2004+AC:200
		Property class		cteristic strength		ristic yield ength	fracture elongation	
1	Threaded rod	5.8	f _{uk}	500	fyk	400	A ₅ > 8 %	EN 10263:2001, EN 10025-2:2019
		8.8	[N/mm²]	800	[N/mm²]	640	A ₅ > 8 %	
2	Hoveen put	5	for class	5.8				EN ISO 898-2:2012
2	Hexagon nut	8	for class	5.8, 8.8				EN 150 898-2:2012
3	Washer		steel, zin	c plated				
Stain	lless steel A2 lless steel A4 corrosion resist				[Γ	[
1	Threaded rod	Property class		cteristic strength		ristic yield ength	fracture elongation	EN 10088:2014
I	Threaded rod	70	f uk	700	f _{yk}	450	A ₅ > 8 %	EN ISO 3506-1:2009
		80	[N/mm ²]	800	[N/mm ²]	600	A5 > 8 %	
2	Hexagon nut	70	for class	70				EN 10088:2014
2	The Augon Hut	80	for class 70, 80				EN ISO 3506-2:2009	
3	Washer		stainless steel or high corrosion resistant steel (corrosion resistant class at least corresponding to the threaded rod)					EN 10088:2014
Glass	s capsule							
4	Glass capsule		glass, qu	artz, resin,	hardener			
aps	sule Adhesive	Anchor V	V-VPZ					Annex A3

Page 8 of European Technical Assessment ETA-21/0168 of 1 June 2021

English translation prepared by DIBt

Anchor size	M8	M10	M12	M16	M20			
Static or quasi-static action			~					
Base materials	compacted, reinforced or unreinforced normal weight concrete without fibers acc. to EN 206:2013+A1:2016 strength classes C20/25 to C50/60, acc. to EN 206:2013+A1:20							
	cracked or uncracked concrete							
Temperature range I -40°C to +40°C	max long tern	max long term temperature +24°C; max short term temperature +40°C						
Temperature range II -40°C to +80°C	max long tern	max long term temperature +50°C; max short term temperature +80°C						

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions:

Threaded rod	Use according to EN 1993-1-4:2015 corresponding to the corrosion resistance class CRC according to Annex A, Table A.2
W-VD-A/A2	CRC II
W-VD-A/A4	CRC III
W-VD-A/HCR	CRC V

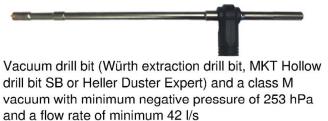
Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work
- Anchorages are designed according to EN 1992-4:2018 or TR 055, version February 2018

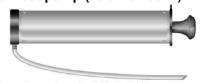
Installation:

- Dry or wet concrete
- Making of drill hole by hammer drilling, compressed air drilling or vacuum drilling
- Installation direction: D3 downwards, horizontally and upwards (e.g. overhead) installation

Capsule Adhesive Anchor W-VPZ


Intended use Specifications Annex B1

Deutsches Institut für Bautechnik


Anchor size			M8	M10	M12	M16	M20
Diameter of threaded rod	d=d _{nom}	[mm]	8	10	12	16	20
Nominal diameter of drill hole	d ₀	[mm]	10	12	14	18	22
Depth of drill hole	h₀	[mm]	80	90	110	125	170
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170
Diameter of clearance hole in the fixture	df	[mm]	9	12	14	18	22
Cleaning Brush WIT-		[-]	RMB 10	RMB 12	RMB 14	RMB 18	RMB 22
Diameter of Cleaning Brush	d _{b,min} ≥	[mm]	10,5	12,5	14,5	18,5	22,5
Maximum installation torque	T _{inst} ≤	[Nm]	10	20	40	80	150

Accessories

Vacuum drill bit

Blow-out pump (volume 750ml)

Cleaning Brush WIT-RMB

Table B2: Minimum member thickness, edge distance and spacing

Anchor size			M8	M10	M12	M16	M20
Minimum member thickness h _{min} [mm		[mm]	110	120	140	160	220
Minimum edge distance	Cmin	[mm]	40	45	45	50	55
Minimum spacing	Smin	[mm]	40	50	60	75	90

Table B3: Curing time

Concrete temperature	Minimum curing time
-20°C to -16°C	17 h
-15°C to -11°C	7 h
-10°C to -6°C	4 h
-5°C to -1°C	3 h
0°C to +4°C	50 min
+5°C to +9°C	25 min
+10°C to +19°C	15 min
+20°C to +29°C	6 min
+30°C to +40°C	6 min
Capsule temperature	-15°C to +40°C

Capsule Adhesive Anchor W-VPZ

Intended use

Installation parameters, accessories, minimum member thickness, edge distance and spacing, curing time

Annex B2

1			 Hammer drill or compressed air drill: Drill the hole with diameter and depth according Continue with step 2. Vacuum drill: see Annex B2 Drill the hole with diameter and depth according Additional cleaning is not necessary - continue w 	o Table B1.		
Clea	ning]				
			before installation of the anchor, or it must be protec her until installation of the anchor.	ted against		
2a			Blow out the drill hole completely at least 2x from the bottom of the drill hole with blow-out pump or compressed air.			
2	2b		Brush the drill hole 2x with Cleaning Brush WIT-F Observe and check brush diameter d _{b,min} . When brush into the drill hole, a clear resistance must b Otherwise use a new Cleaning Brush.	nserting the		
	2c		Blow out the drill hole completely at least 2x from the bottom of the drill hole with blow-out pump or compressed air.			

	tallation instructions - co	ntinuation					
3		Insert the capsule into the drill hole.					
4		Drive in the anchor rod using a hammer drill set Stop immediately after reaching the setting dept	on rotary impact. h.				
5	°C	Observe curing time according to Table B3. Do not move or load the anchor until it is fully cured.					
6		Remove excess adhesive.					
7	Tinst	Install fixture and apply installation torque T _{inst} according to Table B1.					
ips	ule Adhesive Anchor W-\	/PZ					
	ed Use tion instructions - continuation		Annex B4				

Anchor size		M8	M10	M12	M16	M20		
Steel failure								
Characteristic resistance	under tension load							
Steel,	Property class 5.8	N _{Rk,s}	[kN]	18	29	42	79	123
zinc plated	Property class 8.8	N _{Rk,s}	[kN]	29	46	67	126	196
Stainless steel /	Property class 70	N _{Rk,s}	[kN]	26	41	59	110	172
high corrosion resistant steel	Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196
Partial factor 1)				·	•	·	·	
Steel,	Property class 5.8	γMs,N	[-]	1,5				
zinc plated	Property class 8.8	γMs,N	[-]	1,5				
Stainless steel /	Property class 70	γMs,N	[-]	[-] 1,87				
high corrosion resistant steel	Property class 80	γMs,N	[-]	1,6				

¹⁾ In absence of other national regulations

Table C2: Characteristic steel resistance under shear load

Anchor size				M8	M10	M12	M16	M20
Characteristic resistance	s under shear load							
Steel failure without lever	' arm							
Steel,	Property class 5.8	V ⁰ Rk,s	[kN]	11	17	25	47	73
zinc plated	Property class 8.8	V ⁰ Rk,s	[kN]	15	23	34	63	98
Stainless steel /	Property class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86
high corrosion resistant steel	Property class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98
Steel failure with lever an	n	· · · ·						
Steel,	Property class 5.8	M ⁰ Rk,s	[Nm]	19	37	65	166	325
zinc plated	Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519
Stainless steel /	Property class 70	M ⁰ Rk,s	[Nm]	26	52	92	233	454
high corrosion resistant steel	Property class 80	M ⁰ Rk,s	[Nm]	30	60	105	266	519
Partial factor 1)								
Steel,	Property class 5.8	γMs,V	[-]			1,25		
zinc plated	Property class 8.8	γMs,V	[-]			1,25		
Stainless steel /	Property class 70	γMs,V	[-]			1,56		
high corrosion resistant steel	Property class 80	γMs,V	[-]			1,33		

nce of other national

Capsule Adhesive Anchor W-VPZ

Performance

Characteristic steel resistance under tension and shear load

Annex C1

Anchor size				M8	M10	M12	M16	M20	
Steel failure									
Characteristic resistance	e under tension load								
Characteristic tension resi	stance	N _{Rk,s}	[kN]		se	e Table	C1		
Partial factor		γMs,N	[-]	see Table C1					
Combined pull-out and o	oncrete failure								
Characteristic bond resign	stance in <u>uncracked</u> conc	crete C2	20/25						
Temperature range I:	+24°C / +40°C	τ _{Rk,ucr}	[N/mm ²]	10,0	13,0	13,0	13,0	13,0	
Temperature range II:	+50°C / +80°C	τ _{Rk,ucr}	[N/mm ²]	8,5	11,0	11,0	11,0	11,0	
Increasing factors for uncracked concrete		Ψc	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,17}$					
Characteristic bond resi	stance in <u>cracked</u> concre	te C20/	25						
Temperature range I:	+24°C / +40°C	τ _{Rk,cr}	[N/mm ²]	5,0	6,5	7,0	7,5	7,5	
Temperature range II:	+50°C / +80°C	τRk,cr	[N/mm ²]	4,5	5,5	6,0	6,0	6,0	
Increasing factors for crac	ked concrete	Ψc	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,14}$					
Reduction factor ψ^{0}_{sus} in	concrete C20/25								
Temperature range I:	+24°C / +40°C	ψ^0 sus	[-]			0,64			
Temperature range II:	+50°C / +80°C	ψ^0 sus	[-]			0,63			
Concrete cone failure									
Faster k	uncracked concrete	k _{ucr,N}	[-]			11,0			
Factor k ₁ –	cracked concrete	k _{cr,N}	[-]	7,7					
Edge distance		C cr,N	[mm]	1,5 h _{ef}					
Spacing		S cr,N	[mm]	3 h _{ef}					
Splitting failure									
-	h/h _{ef} ≥ 2,0					1,0 h _{ef}			
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	2 • h _{ef} (2,5 - h / h _{ef})					
	h/h _{ef} ≤ 1,3			2,4 h _{ef}					
Spacing		Scr,sp	[mm]			$2 \; c_{\text{cr,sp}}$			
Installation factor		γinst	[-]			1,2			

Capsule Adhesive Anchor W-VPZ

Performance

Characteristic values under tension load

Annex C2

Table C4: Characteristic values for shear	loads						
Anchor size			M8	M10	M12	M16	M20
Steel failure <u>without</u> lever arm				•		•	
Characteristic shear resistance	V ⁰ Rk,s	[kN]		se	e Table	C2	
Ductility factor	k7	[-]			1,0		
Partial factor	γMs,V	[-]		se	e Table	C2	
Steel failure <u>with</u> lever arm							
Characteristic bending resistance	M ⁰ Rk,s	[Nm]		se	e Table	C2	
Partial factor	γMs,V	[-]		se	e Table	C2	
Concrete pry-out failure							
Pry-out factor	k ₈	[-]			2,0		
Concrete edge failure							
Effective length of anchor	lf	[mm]		min	(h _{ef} ;12 d	d _{nom})	
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20
Installation factor	γinst	[-]			1,0		

Capsule Adhesive Anchor W-VPZ

Performance

Characteristic values under shear load

Annex C3

Anchor size			M8	M10	M12	M16	M20
Displacement factor ¹⁾ for uncr	acked concre	te	1				
Dianta a sus ant	δ _{N0} -factor	[mm/(N/mm ²)]	0,015	0,031	0,035	0,015	0,046
Displacement	δ _{N∞} -factor	[mm/(N/mm ²)]	0,085	0,067	0,067	0,067	0,067
Displacement factor ¹⁾ for crac	ked concrete		_				
Displacement	δ_{N0} -factor	[mm/(N/mm ²)]	0,046	0,038	0,024	0,008	0,024
Displacement	δ _{N∞} -factor	[mm/(N/mm ²)]	0,192	0,142	0,090	0,104	0,082
⁾ Calculation of the displacement $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$; Table C6: Displacements	acting bond stre under shea						
Anchor size			M8	M10	M12	M16	M20
Displacement factor ¹⁾							
	S. fastar	[0.00	0.00	0.05		0.04
Displacement	δ _{v0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04
¹⁾ Calculation of the displacement $\delta v_0 = \delta v_0$ -factor V; V:	δv∞-factor δv∞-factor	[mm/(kN)]	0,06	0,08	0,05	0,04	0,04
Displacement ¹⁾ Calculation of the displacement $\delta_{V0} = \delta_{V0}$ -factor \cdot V; V: $\delta_{V\infty} = \delta_{V\infty}$ -factor \cdot V;	δ _{∨∞} -factor	[mm/(kN)]					-

Performance Displacements