

DECLARATION OF PERFORMANCE

Nr. LE_0904411065_04_M_W-FA(1)

This is an English translation of the original German wording. In cases of doubt, the German version applies.

1.	Unique identification code of the product	Würth Fixanchor W-FA
	type:	ArtNo. 09044*; 59320*; 59321*; 59322*; 59323*; 59324*; 59329*
		Excluded are following ArtNr. 0904411061; 5932006040;
		5932008050; 5932010060; 5932012075; 5932906040
2.	Intended use(s):	Mechanical fastener for use in concrete
3.	Manufactured by:	Adolf Würth GmbH & Co. KG
		Reinhold-Würth-Str. 12 - 17
		D – 74653 Künzelsau
4.	System(s) of assessment and verification of constancy of performance:	System 1
5.	European Assessment Document:	EAD 330232-01-0601, Edition 12/2019
	European Technical Assessment:	ETA-02/0001 - 03/02/2021
	Technical Assessment Body:	Deutsches Institut für Bautechnik (DIBt), Berlin
	Notified Body or Bodies:	2873, Institut für Stahlbau und Werkstoffmechanik (IFSW), Darmstadt

6. Declared performance(s):

Essential Characteristics	Performance	Harmonised Technical Specification
Mechanical resistance and stability (BWR 1)		
Characteristic resistance to tension load (static and quasi static action) Method A	See Annex B4, C1 and C2	
Characteristic resistance to shear load (static and quasi static action)	See Annex C3	ETA-02/0001
Displacements and Durability	See Annex C4 and B1	EAD 330232-01-0601,
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed	Edition 12/2019
Safety in case of fire (BWR 2)		
Reaction to fire	Class A1	
Resistance to fire	No performance assessed	

The performance of the product identified above corresponds to the declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Original signed by:

Frank Wolpert Authorized Signatory, Head of Market Division

Künzelsau, 24/03/2023

Original signed by:

Dr. -Ing. Siegfried Beichter Authorized Signatory, Head of Quality

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-02/0001 of 2 February 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Würth Fixanchor W-FA
Product family to which the construction product belongs	Mechanical fastener for use in concrete
Manufacturer	Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND
Manufacturing plant	Werk 1
This European Technical Assessment contains	15 pages including 3 annexes which form an integral part of this assessment
•	
contains This European Technical Assessment is issued in accordance with Regulation (EU)	of this assessment

European Technical Assessment ETA-02/0001 English translation prepared by DIBt

Page 2 of 15 | 2 February 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 15 | 2 February 2021

Specific Part

1 Technical description of the product

The Würth Fixanchor W-FA is a fastener made of zinc coated steel or stainless steel which is placed into a drilled hole and anchored by application of the installation torque. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi static action) Method A	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi static action)	See Annex C3
Displacements and Durability	See Annex C4 and B1
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.1 Mechanical resistance and stability (BWR 1)

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance				
Reaction to fire	Class A1				
Resistance to fire	No performance assessed				

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-02/0001 English translation prepared by DIBt

Page 4 of 15 | 2 February 2021

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 2 February 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

additional marking: stainless steel A2

- A4 stainless steel
- HCR high corrosion resistant steel

Marking of length	Α	В	С	D	E	F	G	Н	I	J	K	L	М
Length of anchor min \geq	38,1	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5
Length of anchor max <	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2
Marking of length	N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z
Marking of length Length of anchor min ≥	N 203,2	O 215,9	P 228,6		R 254,0	S 279,4	T 304,8	U 330,2	•	W 381,0	X 406,4	Y 431,8	_
		-	•	241,3		-	, -	U 330,2 355,6	355,6		X 406,4 431,8	Y 431,8 457,2	_

Dimensions in mm

Würth Fixanchor W-FA

Product description

Marking and Dimensions

Annex A1

Page 6 of European Technical Assessment ETA-02/0001 of 2 February 2021

English translation prepared by DIBt

Part	Designation	Material
	-	
W-FA/S electroplated		≥ 5 µm acc. to EN ISO 4042:1999
W-FA/	F galvanized	\ge 40 µm (in average 50 µm) acc. to EN ISO 10684:2011 or EN ISO 1461:2009
W-FA/	SH sherardized	≥ 45 µm acc. to EN ISO 17668:2016
1	Conical bolt	Cold formed or machined steel
2	Expansion sleeve	Stainless steel according CRC II ¹⁾ , acc. to EN 10088:2014
3	Washer	Steel, zinc plated
4	Hexagon nut	Property class 8 acc. to EN ISO 898-2:2012
W-FA/	A2	
1	Conical bolt	Stainless steel according CRC II ¹⁾ , coated
2	Expansion sleeve	Stainless steel according CRC II ¹⁾ , acc. to EN 10088:2014
3	Washer	Stainless steel according CRC II ¹⁾
4	Hexagon nut	Stainless steel according CRC II ¹⁾ , property class 70, coated, EN ISO 3506-2:2009
W-FA/	A4	
1	Conical bolt	Stainless steel according CRC III ¹⁾ , coated
2	Expansion sleeve	Stainless steel according CRC II ¹⁾ or CRC III ¹⁾ , acc. to EN 10088:2014
3	Washer	Stainless steel according CRC III ¹⁾
4	Hexagon nut	Stainless steel according CRC III ¹⁾ , property class 70, coated, EN ISO 3506-2:2009
W-FA/	HCR	
1	Conical bolt	Stainless steel according CRC V ¹⁾ , coated
2	Expansion sleeve	Stainless steel according CRC III ¹⁾ , acc. to EN 10088:2014
3	Washer	Stainless steel according CRC V ¹⁾
4	Hexagon nut	Stainless steel according CRC V ¹⁾ , property class 70, coated, EN ISO 3506-2:2009, EN 10088:2014

Würth Fixanchor W-FA

Product description Materials

Annex A2

Würth Fixand	chor W-FA	M6	M8	M10	M12	M16	M20			
W-FA/S	electroplated	~	✓	✓	✓	✓	✓			
W-FA/F	hot-dip galvanized	-	✓	✓	✓	✓	✓			
W-FA/SH	sherardized	✓	✓	~	~	✓	~			
W-FA/A2	stainless steel	✓	~	~	✓	✓	~			
W-FA/A4	stainless steel	~	✓	~	~	~	~			
W-FA/HCR	high corrosion resistant steel	✓	✓	✓	✓	✓	✓			
	static or quasi-static action		✓ · · · · · · · · · · · · · · · · · · ·							
All versions	uncracked concrete									

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions:

Anchor version	Use according to EN 1993-1-4:2015 corresponding to the corrosion resistance class CRC according to Annex A, Table A.2
W-FA/A2	CRC II
W-FA/A4	CRC III
W-FA/HCR	CRC V

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.)
- Anchorages are designed according to EN 1992-4:2018 or TR 055

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the obligation of the person responsible for technical matters on site.
- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener

Würth Fixanchor W-FA

Intended use Specifications Annex B1

Deutsches Institut für Bautechnik

Anchor size					М8	M10	M12	M16	M20
Nom	inal drill hole diameter	[mm]	6	8	10	12	16	20	
Cutting diameter of drill bit $d_{cut} \leq$				6,40	8,45	10,45	12,5	16,5	20,55
ant	W-FA/S	T _{inst} =	[Nm]	8	15	30	50	100	200
n torc	W-FA/F	T _{inst} =	[Nm]	-	15	30	40	90	120
Installation torque	W-FA/SH	T _{inst} =	[Nm]	5	15	30	40	90	120
Insta	W-FA/A2 , W-FA/A4 , W-FA/HCR	T _{inst} =	[Nm]	6	15	25	50	100	160
	Diameter of clearance hole $d_f \leq$		[mm]	7	9	12	14	18	22
Emb	edment depth h _{ef,1}	-			<u>.</u>	<u>.</u>			
Effec	tive embedment depth	$h_{\text{ef},1} \geq$	[mm]	30	35	42	50	64	78
Dept	h of drill hole	$h_{1,1} \geq$	[mm]	45	55	65	75	95	110
Emb	edment depth	$h_{\text{nom},1} \geq$	[mm]	39	47	56	67	84	99
Emb	edment depth h _{ef,2}	-			-	_		-	
Effec	tive embedment depth	$h_{\text{ef,2}} \geq$	[mm]	40	44	48	65	82 (80) ¹⁾	100
Dept	h of drill hole	h1,2≥	[mm]	55	65	70	90	110	130
Emb	edment depth	$h_{\text{nom},2} \geq$	[mm]	49	56	62	82	102	121
Emb	edment depth h _{ef,3}								
Effec	tive embedment depth	$h_{\text{ef},3} \geq$	[mm]	60	70	80	100	120	115
Dept	h of drill hole	$h_{1,3} \geq$	[mm]	75	91	102	125	148	145
Emb	edment depth	h _{nom,3} ≥	[mm]	69	82	94	117	140	136

¹⁾ Anchor version W-FA/A2 , W-FA/A4 , W-FA/HCR

Würth Fixanchor W-FA

Intended use Installation data Annex B3

Deutsches Institut für Bautechnik

Anchor size			M6	M8	M10	M12	M16	M20
Embedment depth hef,1					•	4		-
Minimum member thickness	h _{min}	[mm]	80	80	100	100	130	160
Minimum spacing	Smin	[mm]	35	40	55	100	100	140
Minimum edge distance	Cmin	[mm]	40	45	65	100	100	140
Embedment depth hef,2	_				·	-		-
Minimum member thickness	h _{min}	[mm]	100	100	100	130	170	200
Minimum spacing	Smin	[mm]	35	40	55	75	90	105
Minimum edge distance	Cmin	[mm]	40	45	65	90	105	125
Embedment depth hef,3					•	-	-	-
Minimum member thickness	h _{min}	[mm]	120	126	132	165	208	215
Minimum spacing	Smin	[mm]	35	40	55	75	90	105
Minimum edge distance	Cmin	[mm]	40	45	65	90	105	125

¹⁾ Anchor version W-FA/F: M8-M20

Table B3: Minimum spacings and edge distances for W-FA/A2 , W-FA/A4 , W-FA/HCR

		M6	M8	M10	M12	M16	M20
h _{min}	[mm]	80	80	100	100	130	160
Smin	[mm]	35	60	55	100	110	140
Cmin	[mm]	40	60	65	100	110	140
-							
h _{min}	[mm]	100	100	100	130	160	200
Smin	[mm]	35	35	45	60	80	100
for $c \ge$	[mm]	40	65	70	100	120	150
Cmin	[mm]	35	45	55	70	80	100
for $s \ge$	[mm]	60	110	80	100	140	180
-							
h _{min}	[mm]	120	126	132	165	200	215
Smin	[mm]	35	35	45	60	80	100
for $c \ge$	[mm]	40	65	70	100	120	150
Cmin	[mm]	35	45	55	70	80	100
for s ≥	[mm]	60	110	80	100	140	180
	Smin Cmin hmin Smin for c ≥ Cmin for s ≥ hmin for c ≥ Cmin	$\begin{array}{c c} & \mathbf{s}_{min} & [mm] \\ \hline & \mathbf{for} \ \mathbf{c} \geq & [mm] \\ \hline & \mathbf{for} \ \mathbf{s} \geq & [mm] \\ \hline & \mathbf{for} \ \mathbf{s} \geq & [mm] \\ \hline & \mathbf{for} \ \mathbf{s} \geq & [mm] \\ \hline & \mathbf{for} \ \mathbf{c} \geq & [mm] \\ \hline & \mathbf{S}_{min} & [mm] \\ \hline & \mathbf{for} \ \mathbf{c} \geq & [mm] \\ \hline & \mathbf{c}_{min} & [mm] \\ \hline & \mathbf{for} \ \mathbf{c} \geq & [mm] \\ \hline \end{array}$	$\begin{array}{c c c c c c c } & & & & & & & \\ \hline h_{min} & [mm] & & & & & \\ \hline S_{min} & [mm] & & & & & \\ \hline C_{min} & [mm] & & & & & \\ \hline h_{min} & [mm] & & & & & \\ \hline h_{min} & [mm] & & & & & \\ \hline for c \geq & [mm] & & & & & \\ \hline for s \geq & [mm] & & & & & \\ \hline for s \geq & [mm] & & & & & \\ \hline h_{min} & [mm] & & & & & \\ \hline h_{min} & [mm] & & & & & \\ \hline h_{min} & [mm] & & & & & \\ \hline for c \geq & [mm] & & & & & \\ \hline for c \geq & [mm] & & & & & \\ \hline for c \geq & [mm] & & & & & \\ \hline h_{min} & [mm] & & & & & \\ \hline \end{array}$	$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Intermediate values by linear interpolation

Würth Fixanchor W-FA

Intended use

Minimum spacings and edge distances

Annex B4

Installation instructions		
	Drill hole perpendicular to concrete surface, positio holes without damaging the reinforcement. If using a vacuum drill bit, proceed with step 3.	ning of the drill
2	Blow out dust. Alternatively, vacuum clean down to the hole.	o the bottom of
3	Drive in anchor, such that the selected embedmen	t depth is met.
4 Contraction of the second se	Apply installation torque T _{inst} as specified in Table I	B1.
Würth Fixanchor W-FA Intended use Installation instructions		Annex B5

Anchor size				M6	M8	M10	M12	M16	M20		
Installation factor	ation factor γ _{inst}						,0				
Steel failure			[-]								
Characteristic resistance		N _{Rk,s}	[kN]	8,7	15,3	26	35	65	107		
Partial factor		γMs	[-]		1,	5	1	1,	6		
Pull-out			-					-			
Characteristic resistance	for h _{ef,1}	N _{Rk,p}	[kN]	6,5 ²⁾	10,22)	13,4	17,4	25,2	33,9		
in uncracked concrete	for h _{ef,2}	N _{Rk,p}	[kN]	10	13	16,4	25,8	36,5	49,2		
C20/25	for h _{əf,3}	N _{Rk,p}	[kN]	10	13	16,4	26	40	55		
Increasing factor for $N_{Rk,\rho}$	ι factor for N _{Rk,p} ψc				$\left(\frac{f_{ck}}{20}\right)^{0,5}$		$\left(\frac{f_{ck}}{20}\right)^{0,29}$	$\left(\frac{f_{ck}}{20}\right)^{0,33}$	$\left(\frac{f_{ck}}{20}\right)^{0}$		
Splitting	-		-				-	<u> </u>			
Characteristic resistance in uncracked concrete C20/25	[kN]	min [N _{Rk,p} ; N ⁰ _{Rk,c} ³⁾]									
Embedment depth hef,1		I									
Spacing		Scr,sp	[mm]	180	210	230	240	320	400		
Edge distance		Ccr,sp	[mm]	90	105	115	120	160	200		
Embedment depth hef,2											
Spacing		Scr,sp	[mm]	160	220	240	330	410	500		
Edge distance		C _{cr,sp}	[mm]	80	110	120	165	205	250		
Embedment depth h _{ef,3}											
Spacing		Scr,sp	[mm]	360	240	480	600	720	690		
Edge distance		C cr,sp	[mm]	180	210	240	300	360	345		
Concrete cone failure					-	-			•		
		for $h_{ef,1} \ge$	[mm]	30 ²⁾	35 ²⁾	42	50	64	78		
Effective embedment depth		for $h_{ef,2} \ge$	[mm]	40	44	48	65	82	100		
		for $h_{ef,3} \ge$	[mm]	60	70	80	100	120	115		
Spacing		Scr,N	[mm]				(1,2,3)				
Edge distance		Ccr,N	[mm]				əf (1,2,3)				
Factor uncracked conc		k ucr,N	[-]				,0				
cracked concret	e	k _{cr,N}	[-]		No performance assessed						

¹⁾ Anchor version W-FA/F: M8-M20

 $^{2)}$ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

 $^{3)}$ $N^{0}_{\mbox{ Rk,c}}$ according to EN 1992-4:2018

Würth Fixanchor W-FA

Performance

Characteristic values for tension loads for W.FA/S, W-FA/F, W-FA/SH

Anchor size				M6	M8	M10	M12	M16	M20		
nstallation factor		γinst	[-]			1	,0				
Steel failure											
Characteristic resistance		N _{Rk,s}	[kN]	10	18	30	44	88	134		
Partial factor		γMs	[-]			1,50	•		1,68		
Pull-out				-							
	for h _{ef,1}	N _{Rk,p}	[kN]	6,5 ¹⁾	9 ¹⁾	12	17,4	25,2	33,9		
Characteristic resistance in – Incracked concrete C20/25 –	for hef,2	N _{Rk,p}	[kN]	8	15	16,4	25	35,2	49,2		
	for h _{ef,3}	N _{Rk,p}	[kN]	8	15	16,4	25	42	60		
ncreasing factor for $N_{Rk,p}$						$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{1}{2}\right)^{0,5}$				
Splitting											
Characteristic resistance in uncracked concrete C20/25		N ⁰ Rk,sp	[kN]			min [N _{Rk}	p; N ⁰ Rk,c ²⁾]			
Embedment depth h _{ef,1}											
Spacing		Scr,sp	[mm]	180	180	180	180	180	180		
Edge distance		Ccr,sp	[mm]	90	90	90	90	90	90		
Embedment depth h _{ef,2}											
The higher one of the decisive	resistan	ces of	Case 1	and Case	2 is applic	able					
Case 1									-		
Characteristic resistance in Incracked concrete C20/25		N^0 Rk,sp	[kN]	6	9	12	20	30	40		
Spacing		Scr,sp	[mm]	3 h _{ef}							
Edge distance		Ccr,sp	[mm]	1,5 h _{ef}							
ncreasing factor for $N^{0}_{Rk,sp}$		ψc	[-]	-] $\left(\frac{f_{ck}}{20}\right)^{0.5}$							
Case 2						1					
Spacing		Scr,sp	[mm]	160	220	240	340	410	560		
Edge distance		Ccr,sp	[mm]	80	110	120	170	205	280		
Embedment depth h _{ef,3}											
Spacing		Scr,sp	[mm]	360	240	480	600	720	690		
Edge distance		Ccr,sp	[mm]	180	210	240	300	360	345		
Concrete cone failure				/				-			
		$h_{\text{ef},1} \geq$	[mm]	30 ¹⁾	35 ¹⁾	42	50	64	78		
Effective Embedment depth _		$h_{ef,2} \geq$	[mm]	40	44	48	65	80	100		
	for	$h_{ef,3} \geq$	[mm]	60	70	80	100	120	115		
Spacing		Scr,N	[mm]				h _{ef}				
Edge distance		Ccr,N	[mm]				5 h _{ef}				
actor uncracked co	ncrete	k _{ucr,N}	[-]				1,0				
cracked co	ncrete	k _{cr,N}	[-]		No	o performa	nce asses	sed			
Restricted to the use of structural com conditions only ^{Nº} _{Rkc} according to EN 1992-4:2018	ponents w	rith h _{ef} < 4	40mm wh	ich are static	ally indeterm	ninate and su	bject to interr	al exposure			

Performance

Characteristic values for tension loads for W-FA/A2 , W-FA/A4 , W-FA/HCR

Deutsches Institut für Bautechnik

Anchor size					M6	M8	M10	M12	M16	M20
Installation factor γ_{inst}							4	1,0		
Steel failure without le	ever arm									
Characteristic	W-FA/S,W W-FA/SH	/-FA/F ¹⁾ ,	V ⁰ Rk.s	[kN]	5	11	17	25	44	69
resistance	W-FA/A2, W-FA/HCR		V ⁰ Rk,s	[kN]	7	12	19	27	50	86
Ductility factor	k ₇ [-]			[-]			1	1,0		
Steel failure with lever	r arm									
W-FA/S, V Characteristic bending W-FA/SH		/-FA/F ¹⁾ ,	M ⁰ Rk.s	[Nm]	9	23	45	78	186	363
resistance W.	W-FA/A2, W-FA/HCR		M ⁰ Rk,s	[Nm]	10	24	49	85	199	454
Partial factor for	W-FA/S,W W-FA/SH	/-FA/F ¹⁾ ,	γMs	[-]	1,25				1,3	33
$V^{0}_{Rk,s}$ and $M^{0}_{Rk,s}$	W-FA/A2 , W-FA/HCR		γMs	[-]					1,4	
Concrete pry-out failu	re									
E sataw faw b	W-FA , W-F W-FA/SH	•A/F ¹⁾ ,	k ₈	[-]	1,0	2,3	2,5	2,9	2,8	3,1
Factor for h ef	W-FA/A2, W-FA/HCR		k ₈	[-]	1,0	2,3	2,8	2,8	3,0	3,3
Concrete edge failure										
		for h _{ef,1}	lf	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Effective length of ancho loading	or in shear	for h ef,2	۱ _f	[mm]	40	44	48	65	82 (80) ³⁾	100
		for h ef,3	lf	[mm]	60	70	80	100	120	115
Outside diameter of and	chor		d _{nom}	[mm]	6	8	10	12	16	20

Würth Fixanchor W-FA

Performance Characteristic values for shear loads

Anchor size			M6	M8	M10	M12	M16	M20
Embedment depth hef,1		I						
W-FA/S , W-FA/F ¹⁾ , W-FA/SH								
Tension load	Ν	[kN]	2,9	5,0	6,5	8,5	12,3	16,6
Displacement	δνο	[mm]	0,3			0,4		
Displacement	δ _{N∞}	[mm]	0,6			1,8		
W-FA/A2 , W-FA/A4 , W-FA/HCR								
Tension load	Ν	[kN]	2,9	4,3	5,7	8,5	12,3	16,6
Displacement	δησ	[mm]	0,4	0,7	0,4	0,4	0,6	1,5
	δ _{N∞}	[mm]			1,3			2,9
Embedment depth $h_{ef,2}$ and $h_{ef,3}$	-			-	-	-	-	
W-FA/S , W-FA/F ¹⁾ , W-FA/SH								
Tension load	Ν	[kN]	4,3	5,8	7,6	11,9	16,7	23,8
Displacement	δησ	[mm]	0,4			0,5		
Displacement	δ∾∞	[mm]	0,7			2,3		
W-FA/A2 , W-FA/A4 , W-FA/HCR		· · ·						
Tension load	Ν	[kN]	3,6	5,7	7,6	11,9	17,2	24,0
Displacement	δνο	[mm]	0,7	0,9	0,5	0,6	0,9	2,1
Displacement	δ∾∞	[mm]		-	1,8			4,2

¹⁾ Anchor version W-FA/F: M8-M20

Table C6: Displacements under shear loads

Anchor size			M6	M8	M10	M12	M16	M20
W-FA/S , W-FA/F ¹⁾ , W-FA/SH								
Shear load	۷	[kN]	2,9	6,3	9,7	14,3	23,6	37,0
Displacement	δνο	[mm]	1,2	1,5	1,6	2,6	3,1	4,4
	δv∞	[mm]	2,4	2,2	2,4	3,9	4,6	6,6
W-FA/A2 , W-FA/A4 , W-FA/HCR								
Shear load	V	[kN]	4,0	6,9	10,9	15,4	28,6	43,7
Displacement	δνο	[mm]	1,1	2,0	1,2	2,0	2,2	2,1
Displacement -	δv∞	[mm]	1,7	3,0	1,8	3,0	3,3	3,2

¹⁾ Anchor version W-FA/F: M8-M20

Würth Fixanchor W-FA

Performance

Displacements